Tight Bounds on the Complexity of Semi-Equitable Coloring of Cubic and Subcubic Graphs

Hanna Furmańczyk(1), M. Kubale(2)

(1) University of Gdańsk, Poland
(2) Gdańsk University of Technology, Poland

A k-coloring of a graph $G = (V, E)$ is called semi-equitable if there exists a partition of its vertex set into independent subsets V_1, \ldots, V_k in such a way that $|V_i| \notin \{\lceil|V|/k\rceil, \lfloor|V|/k\rfloor\}$ and $|V_i| - |V_j| \leq 1$ for each $i, j = 2, \ldots, k$. The color class V_1 is called non-equitable. In the talk we consider the complexity of semi-equitable k-coloring, $k \geq 4$, of the vertices of a cubic or subcubic graph G. In particular, we show that, given a n-vertex subcubic graph G and constants $\epsilon > 0$, $k \geq 4$, it is NP-complete to obtain a semi-equitable k-coloring of G whose non-equitable color class is of size s if $s \geq n/3 + \epsilon n$, and it is polynomially solvable if $s \leq n/3$.